Solution synthesis of telluride-based nano-barbell structures coated with PEDOT:PSS for spray-printed thermoelectric generators.
نویسندگان
چکیده
UNLABELLED Solution-processable telluride-based heterostructures coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (Te-Bi2Te3/PEDOT:PSS) were synthesized through a solution-phase reaction at low temperatures. The water-based synthesis yielded PEDOT PSS-coated Te-Bi2Te3 nano-barbell structures with a high Seebeck coefficient that can be stably dispersed in water. These hybrid solutions were deposited onto a substrate by the spray-printing method to prepare thermoelectric generators. The thermoelectric properties of the Te-Bi2Te3/PEDOT:PSS hybrid films were significantly enhanced by a simple acid treatment due to the increased electrical conductivity, and the power factor of those materials can be effectively tuned over a wide range depending on the acid concentration of the treatment. The power factors of the synthesized Te-Bi2Te3/PEDOT:PSS hybrids were optimized to 60.05 μW m(-1) K(-2) with a Seebeck coefficient of 93.63 μV K(-1) and an electrical conductivity of 69.99 S cm(-1). The flexible thermoelectric generator fabricated by spray-printing Te-Bi2Te3/PEDOT:PSS hybrid solutions showed an open-circuit voltage of 1.54 mV with six legs at ΔT = 10 °C. This approach presents the potential for realizing printing-processable hybrid thermoelectric materials for application in flexible thermoelectric generators.
منابع مشابه
Design principle of telluride-based nanowire heterostructures for potential thermoelectric applications.
We present a design principle to develop new categories of telluride-based thermoelectric nanowire heterostructures through rational solution-phase reactions. The catalyst-free synthesis yields Te-Bi(2)Te(3) "barbell" nanowire heterostructures with a narrow diameter and length distribution as well as a rough control over the density of the hexagonal Bi(2)Te(3) plates on the Te nanowire bodies, ...
متن کاملSynthesis and thermoelectric properties of compositional-modulated lead telluride-bismuth telluride nanowire heterostructures.
We demonstrate the rational solution-phase synthesis of compositional modulated telluride nanowire heterostructures containing lead telluride (PbTe) and bismuth telluride (Bi2Te3). By tuning the ratio between PbTe and Bi2Te3 through adjusting the amount of critical reactants and precursors during the synthesis, the influence of composition on the thermoelectric properties of the nanowire hetero...
متن کاملElectrophysical and Thermoelectric Properties of Nano-scaled In2O3:Sn, Zn, Ga-Based Thin Films: Achievements and Limitations for Thermoelectric Applications
The thermoelectric properties of nano-scaled In2O3:Sn films deposited by spray pyrolysis are considered in the present report. It is shown that multicomponent In2O3:Sn-based films are promising material for the application in thermoelectric devices. It is established that the increase in the efficiency of thermoelectric conversion at CSn~5% occurred due to nano-scaled structure of the films stu...
متن کاملHigh-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals
Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, ...
متن کاملFully spray-coated ITO-free organic solar cells for low-cost power generation
We report on cost-effective ITO-free organic solar cells (OSCs) fabricated by a spray deposition method. All solution-processable layers of solar cells—a highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer and a photoactive layer based on poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 (PCBM)—were spray-coated. PEDOT:PSS a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 8 21 شماره
صفحات -
تاریخ انتشار 2016